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Abstract. The Cell processor is a typical example of a heterogeneous multiprocessor on-
chip architecture that uses several levels of parallelism to deliver high performance. Reducing
the gap between peak performance and effective performance is the challenge for software
tool developers and the application developers. Image processing and media applications are
typical “main stream” applications. We use the Harris algorithm for the detection of interest
points in an image as a benchmark to compare the performance of several parallel schemes
on a Cell processor. The impact of the DMA controlled data transfers and the synchro-
nizations between SPEs explains the differences between the performance of the different
parallelization schemes. The scalability of the architecture is modeled and evaluated.

1 Introduction

Image processing applications are generally composed of a set of basic operators. These com-
ponents can be point to point operators or convolution kernels. Due to both computation and
memory complexity, real-time execution of image processing algorithms has historically not been
easily done efficiently. Multi-core processors family appeared to respond to an increasing demand
of processing power that single-task scalar systems, which raised computing and energy efficiency
problems, could not satisfy. Furthermore, computing and transfer workloads can be distributed
on the multiple processing units to reduce the processing time, in particular for media process-
ing application which are well suited for the multiple levels of parallelism provided by parallel
architectures.

The Cell processor [16] is a good example of a heterogeneous multi-processor (Fig. 1). Com-
posed of a 64-bit power processor element (PPE), eight specialized units called synergistic proces-
sors (SPE) and a high bandwidth bus called Element Interconnect Bus (EIB), that allows com-
munications between the different components [9], The Cell is a heterogeneous, multi-core chip
containing several levels of parallelism that can be exploited to reach high peak performances.
Assuming a clock speed of 3.2 Ghz, the Cell processor has a theoretical peak performance of 204.8
GFlops/s in single precision. The EIB is composed of four 128-bit rings, each ring can handle up
to three concurrent transfers. The theoretical peak bandwidth of the bus is 204.8 GBytes/s for
internal transfers, when performing 8 simultaneous non-colliding 25.6 GB/s transfers (the Cell
network topology allows only 8 transfers to be done in parallel without collision). The PPE unit is
a traditional 64-bit PowerPC Processor with a vector multimedia extension (VMX aka Altivec).
This Cell’s main processor is in charge of running the OS, and coordinating the SPEs. Each SPE
consists in a synergistic processor unit (SPU) and a Memory Flow Controller (MFC). The SPE
holds a local storage (LS) of 256 KB, and a 128-bit SWAR (very close to Altivec) unit dedicated
to high-performance data-intensive computation. The MFC holds a 1D DMA controller, that is in
charge of transferring data from external devices to the local store, or writing back computation
results to main memory. One of the main characteristics of the Cell processor is its distributed
memory hierarchy. The main drawback of this kind of memory, is that the software must handle
the limited size of the LS of each SPE, by issuing DMA transfers from or toward main storage
(MS).
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Fig. 1. Detailed view of the Cell Broadband Engine Architecture

However, some specific programming aspects – namely Direct Memory Access (DMA) con-
trolled transfers – makes it hard for developers to code and debug their applications quickly on
the Cell processor. Therefore, it is necessary to develop software tools that can make the program-
ming process less painful and the most suitable with the target architecture. Since the release
of the first prototypes and simulator, there were several examples of application porting on the
Cell BE, with various application domains like bio-informatics [19, 18], graphics rendering [3] and
other scientific computing kernels [20, 7, 15]. In [19] the authors adopted a progressive optimization
strategy where a PPU version of the ”Clustal W” applications was tuned so that the code matches
the capabilities of the SPU cores. Various implementation strategies (MPI, OpenMP, SIMD) were
tested and compared in [18] for a protein docking application, the influence of DMA transfers on
performance was also discussed. On the other hand, various programming models was mapped on
the Cell processor in the form of tools, programming languages and compilers [6, 12, 5, 14]. In [5]
the Cell BE is viewed as a shared memory SMP (Symetric Multi-Processor) where the compiler
performs the task of distributing work over the SPEs via OpenMP parallelization directives and
where data transfers to the local stores are handled implicitly using software caches. The CellSs[2]
programming model is somewhat similar to OpenMP as it relies on code annotation to offload
a part of the work to the SPEs except that it relies on a source to source C compiler and a
locality-aware task scheduler optimizes data transfers at runtime. Message passing programming
model is treated in [14]: applications are partitioned into MPI micro-tasks and a static scheduler
performs the task of optimizing their execution on the parallel cores. Finally, the RapidMind [12]
tool relies on a model where data transfers and computation kernels are completely decoupled so
that optimizations like inter-kernel data access elimination and transfer/computation overlapping
can be performed.

The goal of this paper is to evaluate the performance of some computation models relying
on various communication and mapping strategies on the Cell BE processor for a representative
image processing algorithm.

– The implementation and evaluation of several parallelization schemes for the Harris interest
point detection algorithm are performed.

– The influence of DMA transfer size on the performance of each model is demonstrated.
– The impact of chaining technique to boost the performance on the Cell is exposed.
– A comparison between the Cell SPU unit and other cache-based SIMD extensions is provided.
– The scalability of the Cell processors is modeled and measured via efficiency and speedup

metrics.

The paper is organized as follows. In Section 2, we describe our image processing algorithm:
the Harris and Stephen corner detector. Section 3 describes the implementation models and their



comparative performances. In Section 4 we model and evaluate the Cell scalability. Finally, we
sum up our main contributions and discuss future work in Section 5.

2 The Harris Interest Point Detection Algorithm

Harris and Stephen [8] interest point detection algorithm is used in computer vision systems for
feature extraction like motion detection, image matching, tracking, 3D reconstruction and object
recognition. This algorithm was proposed to address the limitations of the Moravec corner detector
[13] which was sensitive to noise and not rotationally invariant. A corner can be defined as the
intersection of two edges when an interest point can be defined as a point which has a well defined
position and can be robustly detected. Hence, the interest point can be a corner but also an
isolated point of local intensity maximum or minimum, a line ending, or a point on a curve where
the curvature is locally maximal.

2.1 Algorithm description

Assuming image patches of dimensions u×v (in our case 3×3) in a grayscale 2-dimensional image
I and shifting it by (x, y), the Harris operator is based on the estimation of local autocorrelation
S for which the expression is:

S(x, y) =
∑

u

∑
v

w(u, v) (I(u, v)− I(u− x, v − y))2 (1)

By approximating S with a second order Taylor series expansion the Harris matrix M is given by:

M =
∑

u

∑
v

w(u, v)
[
I2
x IxIy

IxIy I2
y

]
(2)

An interest point is characterized by a large variation of S in all directions of the vector (x, y). By
analyzing the eigenvalues of M , this characterization can be expressed in the following way. Let
λ1, λ2 be the eigenvalues on the matrix M :

1. If λ1 ≈ 0 and λ2 ≈ 0 then there are no features of interest at this pixel (x, y).
2. If λ1 ≈ 0 and λ2 is some large positive value, then an edge is found.
3. If λ1 and λ2 are both large, distinct positive values, then a corner is found.

Harris and Stephens note that eigenvalues computation is expensive, since it requires the compu-
tation of a square root, and instead suggest the following algorithm:

1. For each pixel (x, y) in the image compute the autocorrelation matrix M :

M =
[
Sxx Sxy

Sxy Syy

]
; where:Sxx =

(
∂I

∂x

)2

⊗ w, Syy =
(
∂I

∂y

)2

⊗ w, Sxy =
(
∂I

∂x

∂I

∂y

)
⊗ w (3)

Where ⊗ is the convolution operator and w a Gaussian kernel.

2. Construct the coarsity map by calculating the coarsity measure C(x, y) for each pixel (x, y),
with k being a empirically determined constant:

C(x, y) = det(M)− k(trace(M))2

det(M) = Sxx · Syy − S2
xy

trace(M) = Sxx + Syy



An illustration of an input 512×512 grayscale image and a interest point detection on it are
given in Fig. 2. To obtain this result, two additional steps are performed in order to extract visually
appealing information from the dense coarsity matrix1. Those steps are:

1. Threshold the interest map by setting all C(x, y) below a given threshold T to zero.
2. Local maxima are then extracted by filtering points which are greater than all the points in a

3× 3 neighborhood.

Fig. 2. Illustration of the interest point detection on a grayscale 512×512 image

2.2 Implementation Details

Grayscale 2-dimensional image pixels are typically 8-bit unsigned integers and the Harris algorithm
output is in this case a 32-bit signed integer. However, because of the limitations of the Cell SPU
ISA, and in order to guarantee a fair comparison between Altivec, SSE and Cell SPU, we chose the
single precision floating point format for both input pixels and the output of the Harris operator.
In our implementation of the Harris operator we divided the algorithm into four computation
kernels: a Sobel operator representing the derivative in the horizontal and vertical directions,
a multiplication operator, a Gaussian smoothing operator (w in Eq. 2) followed by a coarsity
computation. In our implementation the k constant in Eq. 4 is fixed to 0 as it does not change
the qualitative results. This leads to the data flow graph given in Fig. 3 which is representative of
typical image processing algorithms as it includes convolution kernels and point to point operators
and in which the Sobel operator convolution kernels (one for horizontal gradient (GradX) and
one for the vertical gradient (GradY )) and the Gauss smoothing kernel Gauss are defined by :

GradX =
1
8

−1 0 1
−2 0 2
−1 0 1

 ;GradY =
1
8

−1 −2 −1
0 0 0
1 2 1

 ;Gauss =
1
16

1 2 1
2 4 2
1 2 1


The convolution kernels computation consist in centering the kernel on a pixel and computing

the cumulated sum of the point to point product of the kernel elements with the image patch
surrounding the central pixel. Hence, the Harris algorithm can be considered as a memory bounded
problem since this kind of operators are great bandwidth consumers as they consume more elements
than they produce. For this reason we chose to perform memory access optimizations at several
levels of the Cell processor memory hierarchy.
1 As those steps are merely cosmetic, we will not consider them as part of the algorithmic chain.



I S

Iy

Ix

M

M

M

Sxx

Sxy

Syy

H K

Ixx

Ixy

Iyy

G

G

G

Fig. 3. Harris algorithm dataflow graph

3 Optimizations and Parallelization Strategies

Implementing a given image processing application on the Cell is not a trivial task as various
level of optimization are available. We focus on two kind of optimizations : optimizations driven
by the application domain and optimizations driven by the underlying architecture. We detail
how those optimization techniques can be applied to the Harris algorithm and how they drive the
parallelization strategy.

3.1 Signal Processing Optimization

The first optimizations to be applied are Domain Specific. Those optimizations include kernel
separability, kernel overlapping and computation factorization.

Kernel Separability In our case, we will take advantages of the fact that 2D convolution kernels
used by the Gauss and Sobel operators are separable. A 2D convolution kernel is said to be
separable if it can be expressed as the outer product of two vectors Eq. 4, 5 and 6).

Gauss =
1
16

1 2 1
2 4 2
1 2 1

 =
1
16

1
2
1

 ∗ [1 2 1
]

(4)

GradX =
1
8

−1 0 1
−2 0 2
−1 0 1

 =
1
8

1
2
1

 ∗ [−1 0 +1
]

(5)

GradY =
1
8

−1 −2 −1
0 0 0
1 2 1

 =
1
8

−1
0

+1

 ∗ [1 2 1
]

(6)

This reformulation reduces both the number of memory accesses and arithmetic complexity
(see Table 1).

Convolution kernel overlapping The second step is to take into account how kernels are
applied. Due to overlapping (Fig. 4), there is only one new column of pixels to load from the
memory at each iteration. Thanks to kernels separability, they are first applied column-wise by
computing the vertical filtering. Temporary results are saved into registers and convolved with
the horizontal filter. The typical loops transformation are Register Rotation and Loop Unrolling
(an example is given in the next section). The Register Rotation is preferred because it does not
increase the loop body and because no prolog neither epilogue are required.
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Reduction and computation factorization Once the 2D convolution kernels are split into
two 1D convolution kernels and the kernel overlapping has been taken into account, reduction by
column is applied to take advantage of the column reuse. Let us consider the convolution of the
Gauss kernel2 with a 3× 4 pixels matrix (Eq. 7)3.

[
r0 r1

]
=

1 2 1
2 4 2
1 2 1

 ∗
a0 b0 c0 d0

a1 b1 c1 d1

a2 b2 c2 d2

 (7)

We have:

r0 =
[

1 2 1
]
∗

1
2
1

 ∗
a0

a1

a2

 ,
1

2
1

 ∗
 b0b1
b2

 ,
1

2
1

 ∗
 c0c1
c2

 (8)

Let ra, rb and rc be the reduced registers by column:

ra =

1
2
1

 ∗
a0

a1

a2

 , rb

1
2
1

 ∗
 b0b1
b2

 , rc

1
2
1

 ∗
 c0c1
c2

 (9)

The output r0 can be expressed as:

r0 =
[

1 2 1
]
∗
[
ra rb rc

]
= ra + 2rb + rc (10)

In order to compute r1, the first column is recycled by loading three data (column d: d0, d1,
d2 ), and applying the 1D kernel to get a new reduced register ra (Eq. 11). Thus r1 can benefit of
the previous computations (Eq. 12).

ra =

1
2
1

 ∗
d0

d1

d2

 , (11)

r1 =
[

1 2 1
]
∗
[
rb rc ra

]
= rb + 2rc + ra (12)

Each reduced register is used thrice, thus saving memory accesses and computations.

The arithmetic complexity of the Harris operators are given in table 1, where Number indi-
cates the number of calls to each operator when no optimizations are performed and when kernel
separability and overlapping are exploited. We notice that those simple optimizations reduce the
global complexity by 46%.

2 the same technique is also applied to the Sobel operator
3 fractions have been removed to simplify the notation.



Operator Number MUL ADD Total

Complexity without optimization

Sobel 2 3 5 16

Mul 3 1 0 3

Gauss 3 6 8 42

Coarsity 1 2 1 3

Total - 29 35 64

Complexity with optimizations

Sobel 2 0 5 10

Mul 3 1 0 3

Gauss 3 0 6 18

Coarsity 1 2 1 3

Total - 4 30 34

Table 1. arithmetic operator complexity with/without optmizations

Temporal Pipelining In a producer-consumer point of view, there are actually two kind of
operators in the Harris operator, each having a specific memory access pattern:

– point to point operators, like the Multiplication and the Coarsity operators, that consume a
1× 1 data to produce a 1× 1 data.

– 3×3 convolution kernels, like the Sobel gradients (GradX and GradY ) and the Gauss smoother
that consumes 3× 3 data and produces a 1× 1 data (Fig. 5)

A B
(1x1) (1x1)

(3x3)
(1x1)

: data

: operator

point to point operator convolution kernel

Fig. 5. producer-consumer model: memory access pattern for point operator and convolution kernel

The Temporal pipelining optimization consists in chaining operators together by adapting their
memory access patterns in order to remove the intermediate LOAD/STORE instructions.

Figure 6 sums up the various pipelining rules. In rule 1, the output pattern of the first operator
already fit the input pattern. No pattern adaptation is required before removing the intermediate
memory access. For rule 2 : there is nothing to do for pipelining a 3 × 3 convolution kernel with
a point operator. But permuting point operator and convolution kernel (rule 3) requires unrolling
the first operator in order to adapt the pattern. In that case the first operator should be unrolled
thrice in both dimensions. The last rule is the pipelining of two 3× 3 convolution kernels (rule 4).
As for the third rule, the first operator should be unrolled 3× 3 times. The big difference in that
case is that the new input pattern is 5× 5, that requires 25 registers just to hold the loaded data.
One possible drawback of this pipelining is spill code if the compiler runs out of register. The last
point about pipelining is to see the Sobel gradient operator as one operator instead of two: 3× 3
points are loaded only one time but consumed twice to produce two points, one for GradX and
one for GradY .

Benefits of Domain Specific Optimizations The leading idea of all those optimizations is to
reduce complexity. This can be done by both the reduction of the number of computations per



point (arithmetic transformation like reduction) and the amount of memory accesses (temporal
pipelining).

A o B = A B

= A+B

A o B = BA

= A+B

BoA = 9A Bo

= 9A B

= 9A+B

BoA = 9A Bo

= 9A B

= 9A+B

rule #1: point operator chained with point operator

rule #2: convolution kernel chained with point operator

rule #3: point operator chained with convolution kernel

rule #4: convolution kernel chained with convolution kernel

Fig. 6. Pattern fitting pipelining rules

By combining these two kind of optimizations, there are four versions of the Harris operator:
the basic implementation of Harris with or without arithmetic optimizations, and the HalfPipe
implementation of Harris with or without arithmetic optimizations. The HalfPipe optimization
consists in applying rule #2 to Harris: pipelining a convolution kernel with a point to point



operator: Sobel is pipelined with Mul and Gauss is pipelined with Coarsity. Finally, one can remove
too the normalization coefficients of Gauss and Sobel 1/16 and 1/8 that are usually used in image
processing to normalize the output of these kernels to get the same magnitude as the input, but
that is, in our case, useless as the threshold performed is relative to the maximum extracted value.
The memory complexity of the operator is given in table 2 where Number indicates the number
of Input Pattern and of Output Pattern of each operator.

Operator Number Input Pattern Number Output Pattern Total

NoPipe version

Sobel 2 3× 3 2 1× 1 20

Mul 3 1× 1 3 1× 1 6

Gauss 3 3× 3 3 1× 1 30

Coarsity 3 1× 1 1 1× 1 4

Total 51 9 60

NoPipe with Register Rotation and Reduction

Sobel 1 3× 1 2 1× 1 5

Mul 2 1× 1 3 1× 1 5

Gauss 3 3× 1 3 1× 1 12

Coarsity 3 1× 1 1 1× 1 4

Total 17 9 26

HalfPipe version

Sobel+Mul 1 3× 3 3 1× 1 12

Gauss+Coarsity 3 3× 3 1 1× 1 28

Total 36 4 40

HalfPipe version with Register Rotation and Reduction

Sobel+Mul 1 3× 1 3 1× 1 6

Gauss+Coarsity 3 3× 1 1 1× 1 10

total 12 4 16

FullPipe version

Sobel+Mul+Gauss+Coarsity 1 5× 5 1 1× 1 26

total 25 1 26

FullPipe version with Register Rotation and Reduction

Sobel+Mul+Gauss+Coarsity 1 5× 1 1 1× 1 6

total 5 1 6

Table 2. Complexity of memory accesses pattern, with/without optimizations

3.2 DMA related Optimizations

DMA transfers are the main issue when developing image processing applications on the Cell
processor. The developer must care about certain considerations when performing data transfers
from main storage to local stores, or betweens local stores. The first parameter to consider when
transferring data to the SPE is the size of the transfers. We measured the bandwidth of data
transfer size varying from 8 to 16384 bytes which is the maximum size that can be issued by a
single DMA request for the Cell MFC. The data must be transferred by 16 KB chunks to have
a full bandwidth on the EIB, smaller transfers are done with a reduced bandwidth (Tab. 3). The
internal bus bandwidth is also related to the number of concurrent transfers, as that the EIB can
handle up to 12 parallel transfers (3 per ring but only 8 without potential collision (as explained in
section 3). The second parameter to consider is the physical proximity (aka SPE affinity), between
SPEs when performing an inter-SPE transfers. This parameter can not be controlled by the user as



the task of scheduling tasks on SPEs is done by the kernel scheduler. Finally, data being transfered
must be contiguous in memory4. Those limitations have a big impact on the tiling strategy. As
local store has only 256 KB to hold both code and data, large amounts of data being processed
have to be split into tiles which size is compatible with the memory available on the SPEs and
compatible with the maximal size of a DMA transfer.

Size (B) Agg BW (GB/s) Size (B) Agg BW (GB/s)

8 0.92 512 47.92

16 1.86 1024 72.57

32 3.72 2048 86.48

64 7.42 4096 94.09

128 14.87 8192 97.72

256 27.37 16384 104.10

Table 3. Aggregate bandwidth for inter-SPE DMA transfers with 8 SPE transferring concurrently on a
QS20 Blade

3.3 Parallel Implementations

In all the following figures, S refers to the Sobel operator, M to the multiplication, G to Gauss
and H to Harris. The gray rectangles represents an SPE unit. The source image is divided into p
regions of processing (RoPs), p being the number of available SPEs. Each Rop is then split into
tiles. The operators consumes input tiles and produces output tiles. We assume that tile width
equals RoP and image widths in order to avoid transfers of non contiguous memory regions.

MS HG

MS HG

MS HG

MS HG

Fig. 7. Conventional SPMD model.

4 Such DMA transfer are said to be mono-dimensional or 1D



Conventional SPMD The conventional SPMD programming model (Fig. 7) equally divides
the image into 8 RoPs, mapped on the SPEs (in the figure, only 4 SPEs are drawn to get a
smaller figure, but 8 SPEs are actually used). All SPUs execute the same program/code.The PPU
lets the SPUs run one operator on the whole image before proceeding with the next operator. For
example, it will not issue the command for Multiplication operator until all the SPEs have finished
performing the Sobel operator and the whole of the image has been transfered back into the MS.

I

Ix

Iy

S

G SxxIxx

tile

Ix

Ix

M Ixx

Ix

Iy

M Ixy

Iy

Iy

M Iyy

G SxxIxx

G SxxIxx

Sxx

Syy

H KSxy tile

stage 1 stage 2 stage 3 stage 4

SPE #0

SPE #1
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SPE #3

SPE #4

SPE #5

SPE #6

SPE #7

Fig. 8. Conventional pipeline model.

Conventional Pipeline This implementation of the algorithm (Fig. 8) consists in mapping the
graph in pipeline fashion, where the RoP consists in the entire image. This way, we considerably
serialize the algorithm, and maximize the amount of transfers between SPEs. Assuming that most
of the transfers are performed serially, the contention rate on the bus is minimized. The transfers
in this version are characterized by top and bottom borders, added for the convolution kernels
(neighborhood pixels). Left and right borders where removed by performing registers rotation.

Half Chaining: 2 SPEs In this version (Fig. 9), we merge two successive operators in pairs, the
Sobel with the Multiplication, and Gauss with Harris. Thus, we divide the graph into two threads,
that can be duplicated four times to fill in the entire set of SPEs. Unlike the previous version, and
considering that there are four threads running concurrently in each step, the EIB bandwidth can
be considerably affected because of the important amount of concurrent transfers.

Half Chaining + Half Pipeline The difference that we can note here is that in opposition to
the previous model, the Sobel and Mul operators are chained in order to avoid the time loss in
LOAD and in STORE instructions residing between these two steps. Therefore, the number of cycles
per pixel can be considerably improved since we know that the memory instruction latency equals
6 in the SPU [9].

Full Chaining + Half Pipeline : 1 SPE By chaining all the operators into the same SPE, this
implementation not only allows removing LOAD/STORE instructions between operators, but also
improves the parallelism rate of the algorithm, since we can split the input image into 8 slices and
use one SPU to perform all the operations.

3.4 Models Comparison

Fig. 12 gives the comparison between the different implementation models of the Harris algorithm
on the Cell processor. The first observation that can be made is that the conventional pipeline
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Fig. 9. Half chaining model on 2 SPEs.

MS HG

MS HG

MS HG

MS HG

Fig. 10. Half chaining + half pipeline on 2 SPEs.

version gives the worst performances, which was expected: this version is deliberately serialized
and does not fully exploit the TLP (Thread Level Parallelism) offered by the target architecture.
The other observations match our expectations:

– Our memory optimization techniques improve global performances as the fastest implemen-
tation is the Half pipeline+Full chaining version where operators are pipelined and chained
inside an SPE.
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Fig. 11. Half chaining + half pipeline model on 1 SPE
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Fig. 12. Comparison benchmark for implementation models: The left figure shows results obtained in [17]

– The versions where inter-SPE transfers are used, have good performances as the No pipeline+Half
chaining model runs faster than the SPMD model where data transits only on the external
memory bus. In addition Half pipeline+Half chaining is almost as fast as the best version,
which proves that inter-SPE bandwidth is comparable to local LOAD/STORE bandwidth.

3.5 Tile Size Influence

As stated in [11, 10] the size of transfered data blocks has an influence on the bandwidth on the
EIB. In our application domain bandwidth performance is critical for the overall performance of
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Fig. 13. Influence of transfer size on the performance, full pipeline model 1 SPU : The left figure shows
results obtained in [17]

an algorithm since they are characterized by a large transfer/computation ratio. Fig. 13 states
that the best cpp is reached when transferring 16 KB tiles which can be explained as follows:

– 16 KB is the transfer size that guarantees a maximum bandwidth on the EIB .
– Big tile size reduces the amount of reloaded data when performing convolution kernels.

3.6 Performance Analysis

The comparison of global performance of the different implementation models is not sufficient to
prove that memory optimizations are the main factor for performance improvement. In order to
give a more accurate analysis, we performed time measurements at the SPU level where we evalu-
ated the gain provided by merging computation kernels and performing inter-SPE communication.
One can note that the Conventional Pipeline and SPMD models are not considered because their
were implemented just to serve as a reference and can not be compared with the other models as
it does not benefit of most of the optimizations techniques that we cited above.
Table 4 shows on the one hand the clock cycle count for the Halfchain version where two kernels
are decoupled and an intermediate LOAD/STORE operations are required between them and on
the other hand the Halfchain+Halfpipe version where the two kernels are merged (the o opera-
tor denotes the function composition (merging) operator) and the intermediate LOAD/STORE are
removed. As we see in Tab. 4 the speedup provided by this code transformation reaches ×7.2.
The other optimization that we performed which consists in replacing inter-SPE DMA by local

Model Operator Cycles Count Speedup

Halfchain Sobel+Mul+LOAD/STORE 119346 x

Halfchain Gauss+Coarsity+LOAD/STORE 188630 x

Halfchain+Halfpipe (Sobel o Mul)+LOAD/STORE 16539 7.2

Halfchain+Halfpipe (Gauss o Coarsity)+LOAD/STORE 504309 3.5
Table 4. Operator fusion comparison

LOAD/STORE instructions aims to demonstrate the benefit of keeping data inside the local store as
the maximum theoretical bandwidth is 51.6 GB/s for a LOAD/STORE in the LS and 25.6 GB/s for an
inter-SPE GET/PUT DMA operation. One can note the the maximum bandwidth for LOAD/STORE



in Tab. 5 computed assuming that there is 1 instruction issued each cycle (pipelined execution)
for a clock frequency of 3.2 Ghz. The same assumption was made in [10] for the LS bandwidth
measurement. On the other hand, we used the IBM Performance Debugging Tool (PDT) to mea-
sure the average effective DMA bandwidth the result is given in Tab. 5. We observe that there
is an order of magnitude between the two transfer rates which explains the difference in global
performance between Halfchain and Fullchain versions. The measurements that we performed give

Model Communication Type Average Bandwidth GB/s

Halfchain inter-SPE DMA 6.95

Halfchain+Halfpipe LOAD/STORE 51.6
Table 5. average bandwidth comparison between models

a more precise view of the factors that influence the global performance of the different implemen-
tations. Merging computation kernels, reduces the memory complexity by maximizing the reuse
of register to perform intermediate computations. However, this optimization should be used with
care as there is a limited amount of available register to store intermediate results (128 for the
SPU). On the other hand, keeping data in the local store whenever it is possible is a good practice
as the LOAD/STORE bandwidth is higher than inter-SPE DMA bandwidth. This last optimization
increases data locality and thus global performance but is limited by the available memory space
(256 KB for the SPE local store).

3.7 Comparison between the SPU and General Purpose Processors (GPP) with
SIMD extensions
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Fig. 14. Performance comparison between SPU, Intel Xeon and PowerPC 970

Comparing Cell performance with GPP implementation is interesting as the main difference is
the memory management DMA versus cache. Fig. 14 provides the cpp of Harris half-pipe version
running on 1 thread on 1 core on a PowerPC 970 running at 2.5 Ghz and a Core2Duo Xeon 2.5
Ghz at , with Altivec or SSE SIMD instructions. We can note that GPPs become inefficient when
data can not fit in the cache for large image size due to cache replacement policy. Besides, this
phenomenon does not occur with DMA controlled transfers : the image size has no impact on per-
formance. This last characteristic is very interesting for computer vision systems as the execution
time can be predicted accurately and therefore the system can satisfy a real-time constraint.



3.8 Discussion on Benchmarking Methodology

There are several reasons that justify the difference in performance results obtained above and
those in [17]:

1. Since we adopted a separated source compilation (one source for the PPU and one for the
SPU), we were forced to change the compiler from IBM XLC (ppu-xlc, spu-xlc) to GCC (ppu-
gcc, spu-gcc) as in the last release of the Cell SDK (3.0), the XLC compiler became exclusively
single-source. This first point can explain the difference in global performance as some compiler
optimizations can be performed by XLC and not by GCC and vice versa.

2. The second reason concerns measurement methodology. In the [17] we measured the cycles
count in the PPE using the time base counter, with two versions of the code: the first one
including computation and the overhead related to thread creation and synchronization and
the other one without computation. Then we subtracted the second from the first to get the
computation duration. These measures were performed over several runs, and the mean value
was taken. However, data presented a great sensitivity to image size. In this paper we took a
more representative case were we consider the input data coming from a continuous stream
and we make the measure on the PPE with an additional outer loop in the SPEs to process
more than one image. This leads to a thread overhead becoming negligible when compared to
the pure processing time. As this time was subject to big variation in the [17] we chose this
method to attenuate its effect.

3. The last reason is about the computation tiles. In [17], the tile size is fixed to 16K and its width
w always equals the image width W but its height h varies with W , typically h = 16K

w . As
stated in [1] h has an influence on the amount of reloaded data for a tile (when h increases this
amount decreases), we decided to adopt a new measurement methodology where we consider
a 16K tile with h and and w being constants (in our case h = 16 and w = 256) in order
to eliminate this perturbation. Hence, the cpp is less sensitive to image size, which is more
coherent as the tile size is a constant whatever the image size is. Table 6 gives the percentages
of reloaded data with different couples of (h,w). From these values, we conclude that the
amount of reloaded data explains the great sensitivity to image size for the left histograms in
Fig. 12 and Fig. 13.

Image Size H ×W Tile Size h× w Total Reload Ratio %

256× 256 16× 256 11

512× 512 8× 512 20

1024× 1024 4× 1024 33
Table 6. Illustration of the difference of the amount of reloaded data depending on the tile height for the
Halfpipe+Halfchain model

4 Scalability Measure on the Cell Processor

In this section, we evaluate the scalability of the Cell processor by both measuring and modeling
Speedup and Efficiency metrics. The measurements provide informations on how the Cell archi-
tecture scales to the Harris algorithms when varying the number of used SPUs. Modeling those
metrics allows the prediction of scalability when considering future Cell generations with more
accelerator units (SPUs).

Amdahl’s Law In the basic formulation of the Amdahl’s law the execution time of any algorithm
on a sequential machine is divided into two parts: the time to execute the pure sequential part



of the code Seq0 and the time to execute the part of the code that is parallelizable Par0. For a
machine containing p processors the execution time will have the following expression:

T (p) = Seq0 +
Par0
p

(13)

Driscoll and Daasch Reformulation The last formulation is not appropriate to predict per-
formance on the Cell processor. The sequential portion of the code consisting in the cost of the
thread creation, communications and synchronization of the threads. These parameters depend
on the number of processors, namely they increase when the number of processors increases. The
parallel portion of the code is also a function of p. These assumptions was made in [4] by Driscoll
et al. We concluded after measurements that :

Seq(p) = asp+ bs (14)

and
Par(p) = app+ bp (15)

Where as, bs, ap, bp are constants that we measured in our experiments. This leads to the following
expression of the execution time:

T (p) = asp+ bs +
app+ bp

p
= asp+ bs + ap +

bp
p

(16)

One of the main characteristics of parallel architectures that reflect there performance is their
scalability. Scalability metrics show how the system adapt to a certain workload when increasing
the number of processing units. Efficiency and Speedup are one of the basic metrics of scalability,
they are defined by the following expressions:

E =
Ts

pTp
(17)

S =
Ts

Tp
(18)

Where Ts is the execution time on one processor , p the number of processors and Tp is the
execution time on p processors. If we replace Tp and Ts by the expression in Eq. 16 we find the
following expression of the efficiency:

E =
as + bs + ap + bp

asp2 + (as + ap)p+ bp
(19)

This leads to an efficiency decreasing when p increases. The expression of the speedup is of the
form :

S =
(as + bs + ap + bp)p
asp2 + (as + ap)p+ bp

(20)

Which is also a decreasing function of p. One must know that that the expressions above was
evaluated when considering one input image for the algorithm.
When processing an image stream which is typically captured by a video camera, we can consider
the cost of thread creation and synchronization (Seq(p) in the formulas) negligible comparing to
the parallel time (computation). We derive equations 21, 22 and 23 assuming that Seq(p) = 0

T (p) =
Par(p)
p

= ap +
bp
p

(21)

E =
ap + bp
app+ bp

(22)
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Fig. 16. Efficiency measure for a stream of 1000 images of size1024× 1024

S =
(ap + bp)p
app+ bp

(23)

These expressions gives a speedup increasing with p until a saturation value of (1 + bp

ap
) and an

efficiency decreasing with p but slower than in the previous case. As we observe in Fig. 15 and Fig.
16 the measured scalability metrics matches our model as speedup increases with p and efficiency
decreases with p. The measurements were performed with varying the number of used SPUs and



the execution time one SPU served as the sequential time Ts (T (p = 1)).
From the experiments above we can conclude on how the Cell processor scales to our application
which is a data-parallel/memory-bounded problem by making this two assertions:

– The current Cell processor with eight SPUs has a good scalability as the Speedup is close to
the number of the working SPUs and Efficiency is close to 1.

– In the future releases of the Cell where there would be more SPUs, scalability will not be as
good as we measured because an increasing number of cores leads to the decrease of Efficiency
and thus to a saturating Speedup.

5 Conclusion and Future Work

In this paper, we investigated how a sample image processing algorithm - the Harris corner detector
- can be efficiently implemented while taking into account the various architectural particularities
of this processor. We explore, contrary to previous works, other models than the simple SPMD
parallelization technique. We explored a variety of parallelization schemes that took advantage
of the main architectural features of the Cell: a DMA based, distributed memory. The different
optimization techniques, Domain Specific or those related to the Cell architectures were analyzed.
By combining each step of our algorithm in various manners, we demonstrated that chaining and
pipelining operators had a large impact on global performance of the application. Our schemes were
benchmarked on the Harris corner detector because it features both point-to-point and convolution
operations, making it a realistic sample of more complex image processing library. We also proposed
a model of efficiency and scalability for the Cell processor in order to be able to predict performance
of future releases of the machine with a greater number of SPEs. Future works includes : a deeper
analysis of the relation between tiles shape and size and the overall algorithm performance. Other
optimization techniques such as multi-buffering will be explored in the future.
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